3.1.47 \(\int \frac {\tan ^3(d+e x)}{(a+b \tan ^2(d+e x)+c \tan ^4(d+e x))^{3/2}} \, dx\) [47]

3.1.47.1 Optimal result
3.1.47.2 Mathematica [A] (verified)
3.1.47.3 Rubi [A] (verified)
3.1.47.4 Maple [B] (verified)
3.1.47.5 Fricas [B] (verification not implemented)
3.1.47.6 Sympy [F]
3.1.47.7 Maxima [F]
3.1.47.8 Giac [F(-1)]
3.1.47.9 Mupad [F(-1)]

3.1.47.1 Optimal result

Integrand size = 35, antiderivative size = 154 \[ \int \frac {\tan ^3(d+e x)}{\left (a+b \tan ^2(d+e x)+c \tan ^4(d+e x)\right )^{3/2}} \, dx=\frac {\text {arctanh}\left (\frac {2 a-b+(b-2 c) \tan ^2(d+e x)}{2 \sqrt {a-b+c} \sqrt {a+b \tan ^2(d+e x)+c \tan ^4(d+e x)}}\right )}{2 (a-b+c)^{3/2} e}-\frac {a (b-2 c)+(2 a-b) c \tan ^2(d+e x)}{(a-b+c) \left (b^2-4 a c\right ) e \sqrt {a+b \tan ^2(d+e x)+c \tan ^4(d+e x)}} \]

output
1/2*arctanh(1/2*(2*a-b+(b-2*c)*tan(e*x+d)^2)/(a-b+c)^(1/2)/(a+b*tan(e*x+d) 
^2+c*tan(e*x+d)^4)^(1/2))/(a-b+c)^(3/2)/e+(-a*(b-2*c)-(2*a-b)*c*tan(e*x+d) 
^2)/(a-b+c)/(-4*a*c+b^2)/e/(a+b*tan(e*x+d)^2+c*tan(e*x+d)^4)^(1/2)
 
3.1.47.2 Mathematica [A] (verified)

Time = 3.17 (sec) , antiderivative size = 155, normalized size of antiderivative = 1.01 \[ \int \frac {\tan ^3(d+e x)}{\left (a+b \tan ^2(d+e x)+c \tan ^4(d+e x)\right )^{3/2}} \, dx=\frac {\frac {\text {arctanh}\left (\frac {2 a-b+(b-2 c) \tan ^2(d+e x)}{2 \sqrt {a-b+c} \sqrt {a+b \tan ^2(d+e x)+c \tan ^4(d+e x)}}\right )}{(a-b+c)^{3/2}}+\frac {2 a (b-2 c)+2 (2 a-b) c \tan ^2(d+e x)}{(a-b+c) \left (-b^2+4 a c\right ) \sqrt {a+b \tan ^2(d+e x)+c \tan ^4(d+e x)}}}{2 e} \]

input
Integrate[Tan[d + e*x]^3/(a + b*Tan[d + e*x]^2 + c*Tan[d + e*x]^4)^(3/2),x 
]
 
output
(ArcTanh[(2*a - b + (b - 2*c)*Tan[d + e*x]^2)/(2*Sqrt[a - b + c]*Sqrt[a + 
b*Tan[d + e*x]^2 + c*Tan[d + e*x]^4])]/(a - b + c)^(3/2) + (2*a*(b - 2*c) 
+ 2*(2*a - b)*c*Tan[d + e*x]^2)/((a - b + c)*(-b^2 + 4*a*c)*Sqrt[a + b*Tan 
[d + e*x]^2 + c*Tan[d + e*x]^4]))/(2*e)
 
3.1.47.3 Rubi [A] (verified)

Time = 0.42 (sec) , antiderivative size = 152, normalized size of antiderivative = 0.99, number of steps used = 8, number of rules used = 7, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.200, Rules used = {3042, 4183, 1578, 1235, 27, 1154, 219}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {\tan ^3(d+e x)}{\left (a+b \tan ^2(d+e x)+c \tan ^4(d+e x)\right )^{3/2}} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {\tan (d+e x)^3}{\left (a+b \tan (d+e x)^2+c \tan (d+e x)^4\right )^{3/2}}dx\)

\(\Big \downarrow \) 4183

\(\displaystyle \frac {\int \frac {\tan ^3(d+e x)}{\left (\tan ^2(d+e x)+1\right ) \left (c \tan ^4(d+e x)+b \tan ^2(d+e x)+a\right )^{3/2}}d\tan (d+e x)}{e}\)

\(\Big \downarrow \) 1578

\(\displaystyle \frac {\int \frac {\tan ^2(d+e x)}{\left (\tan ^2(d+e x)+1\right ) \left (c \tan ^4(d+e x)+b \tan ^2(d+e x)+a\right )^{3/2}}d\tan ^2(d+e x)}{2 e}\)

\(\Big \downarrow \) 1235

\(\displaystyle \frac {-\frac {2 \int \frac {b^2-4 a c}{2 \left (\tan ^2(d+e x)+1\right ) \sqrt {c \tan ^4(d+e x)+b \tan ^2(d+e x)+a}}d\tan ^2(d+e x)}{(a-b+c) \left (b^2-4 a c\right )}-\frac {2 \left (c (2 a-b) \tan ^2(d+e x)+a (b-2 c)\right )}{(a-b+c) \left (b^2-4 a c\right ) \sqrt {a+b \tan ^2(d+e x)+c \tan ^4(d+e x)}}}{2 e}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {-\frac {\int \frac {1}{\left (\tan ^2(d+e x)+1\right ) \sqrt {c \tan ^4(d+e x)+b \tan ^2(d+e x)+a}}d\tan ^2(d+e x)}{a-b+c}-\frac {2 \left (c (2 a-b) \tan ^2(d+e x)+a (b-2 c)\right )}{(a-b+c) \left (b^2-4 a c\right ) \sqrt {a+b \tan ^2(d+e x)+c \tan ^4(d+e x)}}}{2 e}\)

\(\Big \downarrow \) 1154

\(\displaystyle \frac {\frac {2 \int \frac {1}{4 (a-b+c)-\tan ^4(d+e x)}d\frac {(b-2 c) \tan ^2(d+e x)+2 a-b}{\sqrt {c \tan ^4(d+e x)+b \tan ^2(d+e x)+a}}}{a-b+c}-\frac {2 \left (c (2 a-b) \tan ^2(d+e x)+a (b-2 c)\right )}{(a-b+c) \left (b^2-4 a c\right ) \sqrt {a+b \tan ^2(d+e x)+c \tan ^4(d+e x)}}}{2 e}\)

\(\Big \downarrow \) 219

\(\displaystyle \frac {\frac {\text {arctanh}\left (\frac {2 a+(b-2 c) \tan ^2(d+e x)-b}{2 \sqrt {a-b+c} \sqrt {a+b \tan ^2(d+e x)+c \tan ^4(d+e x)}}\right )}{(a-b+c)^{3/2}}-\frac {2 \left (c (2 a-b) \tan ^2(d+e x)+a (b-2 c)\right )}{(a-b+c) \left (b^2-4 a c\right ) \sqrt {a+b \tan ^2(d+e x)+c \tan ^4(d+e x)}}}{2 e}\)

input
Int[Tan[d + e*x]^3/(a + b*Tan[d + e*x]^2 + c*Tan[d + e*x]^4)^(3/2),x]
 
output
(ArcTanh[(2*a - b + (b - 2*c)*Tan[d + e*x]^2)/(2*Sqrt[a - b + c]*Sqrt[a + 
b*Tan[d + e*x]^2 + c*Tan[d + e*x]^4])]/(a - b + c)^(3/2) - (2*(a*(b - 2*c) 
 + (2*a - b)*c*Tan[d + e*x]^2))/((a - b + c)*(b^2 - 4*a*c)*Sqrt[a + b*Tan[ 
d + e*x]^2 + c*Tan[d + e*x]^4]))/(2*e)
 

3.1.47.3.1 Defintions of rubi rules used

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 219
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[-b, 2]))* 
ArcTanh[Rt[-b, 2]*(x/Rt[a, 2])], x] /; FreeQ[{a, b}, x] && NegQ[a/b] && (Gt 
Q[a, 0] || LtQ[b, 0])
 

rule 1154
Int[1/(((d_.) + (e_.)*(x_))*Sqrt[(a_.) + (b_.)*(x_) + (c_.)*(x_)^2]), x_Sym 
bol] :> Simp[-2   Subst[Int[1/(4*c*d^2 - 4*b*d*e + 4*a*e^2 - x^2), x], x, ( 
2*a*e - b*d - (2*c*d - b*e)*x)/Sqrt[a + b*x + c*x^2]], x] /; FreeQ[{a, b, c 
, d, e}, x]
 

rule 1235
Int[((d_.) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))*((a_.) + (b_.)*(x_) + (c 
_.)*(x_)^2)^(p_), x_Symbol] :> Simp[(d + e*x)^(m + 1)*(f*(b*c*d - b^2*e + 2 
*a*c*e) - a*g*(2*c*d - b*e) + c*(f*(2*c*d - b*e) - g*(b*d - 2*a*e))*x)*((a 
+ b*x + c*x^2)^(p + 1)/((p + 1)*(b^2 - 4*a*c)*(c*d^2 - b*d*e + a*e^2))), x] 
 + Simp[1/((p + 1)*(b^2 - 4*a*c)*(c*d^2 - b*d*e + a*e^2))   Int[(d + e*x)^m 
*(a + b*x + c*x^2)^(p + 1)*Simp[f*(b*c*d*e*(2*p - m + 2) + b^2*e^2*(p + m + 
 2) - 2*c^2*d^2*(2*p + 3) - 2*a*c*e^2*(m + 2*p + 3)) - g*(a*e*(b*e - 2*c*d* 
m + b*e*m) - b*d*(3*c*d - b*e + 2*c*d*p - b*e*p)) + c*e*(g*(b*d - 2*a*e) - 
f*(2*c*d - b*e))*(m + 2*p + 4)*x, x], x], x] /; FreeQ[{a, b, c, d, e, f, g, 
 m}, x] && LtQ[p, -1] && (IntegerQ[m] || IntegerQ[p] || IntegersQ[2*m, 2*p] 
)
 

rule 1578
Int[(x_)^(m_.)*((d_) + (e_.)*(x_)^2)^(q_.)*((a_) + (b_.)*(x_)^2 + (c_.)*(x_ 
)^4)^(p_.), x_Symbol] :> Simp[1/2   Subst[Int[x^((m - 1)/2)*(d + e*x)^q*(a 
+ b*x + c*x^2)^p, x], x, x^2], x] /; FreeQ[{a, b, c, d, e, p, q}, x] && Int 
egerQ[(m - 1)/2]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 4183
Int[tan[(d_.) + (e_.)*(x_)]^(m_.)*((a_.) + (b_.)*((f_.)*tan[(d_.) + (e_.)*( 
x_)])^(n_.) + (c_.)*((f_.)*tan[(d_.) + (e_.)*(x_)])^(n2_.))^(p_), x_Symbol] 
 :> Simp[f/e   Subst[Int[(x/f)^m*((a + b*x^n + c*x^(2*n))^p/(f^2 + x^2)), x 
], x, f*Tan[d + e*x]], x] /; FreeQ[{a, b, c, d, e, f, m, n, p}, x] && EqQ[n 
2, 2*n] && NeQ[b^2 - 4*a*c, 0]
 
3.1.47.4 Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(455\) vs. \(2(143)=286\).

Time = 0.09 (sec) , antiderivative size = 456, normalized size of antiderivative = 2.96

method result size
derivativedivides \(\frac {\frac {b +2 c \tan \left (e x +d \right )^{2}}{\sqrt {a +b \tan \left (e x +d \right )^{2}+c \tan \left (e x +d \right )^{4}}\, \left (4 a c -b^{2}\right )}-\frac {2 c \ln \left (\frac {2 a -2 b +2 c +\left (b -2 c \right ) \left (1+\tan \left (e x +d \right )^{2}\right )+2 \sqrt {a -b +c}\, \sqrt {c \left (1+\tan \left (e x +d \right )^{2}\right )^{2}+\left (b -2 c \right ) \left (1+\tan \left (e x +d \right )^{2}\right )+a -b +c}}{1+\tan \left (e x +d \right )^{2}}\right )}{\left (\sqrt {-4 a c +b^{2}}-b +2 c \right ) \left (\sqrt {-4 a c +b^{2}}+b -2 c \right ) \sqrt {a -b +c}}+\frac {2 c \sqrt {c \left (\tan \left (e x +d \right )^{2}-\frac {-b +\sqrt {-4 a c +b^{2}}}{2 c}\right )^{2}+\sqrt {-4 a c +b^{2}}\, \left (\tan \left (e x +d \right )^{2}-\frac {-b +\sqrt {-4 a c +b^{2}}}{2 c}\right )}}{\left (\sqrt {-4 a c +b^{2}}-b +2 c \right ) \left (-4 a c +b^{2}\right ) \left (\tan \left (e x +d \right )^{2}-\frac {-b +\sqrt {-4 a c +b^{2}}}{2 c}\right )}-\frac {2 c \sqrt {c \left (\tan \left (e x +d \right )^{2}+\frac {b +\sqrt {-4 a c +b^{2}}}{2 c}\right )^{2}-\sqrt {-4 a c +b^{2}}\, \left (\tan \left (e x +d \right )^{2}+\frac {b +\sqrt {-4 a c +b^{2}}}{2 c}\right )}}{\left (\sqrt {-4 a c +b^{2}}+b -2 c \right ) \left (-4 a c +b^{2}\right ) \left (\tan \left (e x +d \right )^{2}+\frac {b +\sqrt {-4 a c +b^{2}}}{2 c}\right )}}{e}\) \(456\)
default \(\frac {\frac {b +2 c \tan \left (e x +d \right )^{2}}{\sqrt {a +b \tan \left (e x +d \right )^{2}+c \tan \left (e x +d \right )^{4}}\, \left (4 a c -b^{2}\right )}-\frac {2 c \ln \left (\frac {2 a -2 b +2 c +\left (b -2 c \right ) \left (1+\tan \left (e x +d \right )^{2}\right )+2 \sqrt {a -b +c}\, \sqrt {c \left (1+\tan \left (e x +d \right )^{2}\right )^{2}+\left (b -2 c \right ) \left (1+\tan \left (e x +d \right )^{2}\right )+a -b +c}}{1+\tan \left (e x +d \right )^{2}}\right )}{\left (\sqrt {-4 a c +b^{2}}-b +2 c \right ) \left (\sqrt {-4 a c +b^{2}}+b -2 c \right ) \sqrt {a -b +c}}+\frac {2 c \sqrt {c \left (\tan \left (e x +d \right )^{2}-\frac {-b +\sqrt {-4 a c +b^{2}}}{2 c}\right )^{2}+\sqrt {-4 a c +b^{2}}\, \left (\tan \left (e x +d \right )^{2}-\frac {-b +\sqrt {-4 a c +b^{2}}}{2 c}\right )}}{\left (\sqrt {-4 a c +b^{2}}-b +2 c \right ) \left (-4 a c +b^{2}\right ) \left (\tan \left (e x +d \right )^{2}-\frac {-b +\sqrt {-4 a c +b^{2}}}{2 c}\right )}-\frac {2 c \sqrt {c \left (\tan \left (e x +d \right )^{2}+\frac {b +\sqrt {-4 a c +b^{2}}}{2 c}\right )^{2}-\sqrt {-4 a c +b^{2}}\, \left (\tan \left (e x +d \right )^{2}+\frac {b +\sqrt {-4 a c +b^{2}}}{2 c}\right )}}{\left (\sqrt {-4 a c +b^{2}}+b -2 c \right ) \left (-4 a c +b^{2}\right ) \left (\tan \left (e x +d \right )^{2}+\frac {b +\sqrt {-4 a c +b^{2}}}{2 c}\right )}}{e}\) \(456\)

input
int(tan(e*x+d)^3/(a+b*tan(e*x+d)^2+c*tan(e*x+d)^4)^(3/2),x,method=_RETURNV 
ERBOSE)
 
output
1/e*(1/(a+b*tan(e*x+d)^2+c*tan(e*x+d)^4)^(1/2)*(b+2*c*tan(e*x+d)^2)/(4*a*c 
-b^2)-2*c/((-4*a*c+b^2)^(1/2)-b+2*c)/((-4*a*c+b^2)^(1/2)+b-2*c)/(a-b+c)^(1 
/2)*ln((2*a-2*b+2*c+(b-2*c)*(1+tan(e*x+d)^2)+2*(a-b+c)^(1/2)*(c*(1+tan(e*x 
+d)^2)^2+(b-2*c)*(1+tan(e*x+d)^2)+a-b+c)^(1/2))/(1+tan(e*x+d)^2))+2*c/((-4 
*a*c+b^2)^(1/2)-b+2*c)/(-4*a*c+b^2)/(tan(e*x+d)^2-1/2*(-b+(-4*a*c+b^2)^(1/ 
2))/c)*(c*(tan(e*x+d)^2-1/2*(-b+(-4*a*c+b^2)^(1/2))/c)^2+(-4*a*c+b^2)^(1/2 
)*(tan(e*x+d)^2-1/2*(-b+(-4*a*c+b^2)^(1/2))/c))^(1/2)-2*c/((-4*a*c+b^2)^(1 
/2)+b-2*c)/(-4*a*c+b^2)/(tan(e*x+d)^2+1/2*(b+(-4*a*c+b^2)^(1/2))/c)*(c*(ta 
n(e*x+d)^2+1/2*(b+(-4*a*c+b^2)^(1/2))/c)^2-(-4*a*c+b^2)^(1/2)*(tan(e*x+d)^ 
2+1/2*(b+(-4*a*c+b^2)^(1/2))/c))^(1/2))
 
3.1.47.5 Fricas [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 520 vs. \(2 (142) = 284\).

Time = 0.63 (sec) , antiderivative size = 1077, normalized size of antiderivative = 6.99 \[ \int \frac {\tan ^3(d+e x)}{\left (a+b \tan ^2(d+e x)+c \tan ^4(d+e x)\right )^{3/2}} \, dx=\text {Too large to display} \]

input
integrate(tan(e*x+d)^3/(a+b*tan(e*x+d)^2+c*tan(e*x+d)^4)^(3/2),x, algorith 
m="fricas")
 
output
[-1/4*(((b^2*c - 4*a*c^2)*tan(e*x + d)^4 + a*b^2 - 4*a^2*c + (b^3 - 4*a*b* 
c)*tan(e*x + d)^2)*sqrt(a - b + c)*log(((b^2 + 4*(a - 2*b)*c + 8*c^2)*tan( 
e*x + d)^4 + 2*(4*a*b - 3*b^2 - 4*(a - b)*c)*tan(e*x + d)^2 + 4*sqrt(c*tan 
(e*x + d)^4 + b*tan(e*x + d)^2 + a)*((b - 2*c)*tan(e*x + d)^2 + 2*a - b)*s 
qrt(a - b + c) + 8*a^2 - 8*a*b + b^2 + 4*a*c)/(tan(e*x + d)^4 + 2*tan(e*x 
+ d)^2 + 1)) - 4*sqrt(c*tan(e*x + d)^4 + b*tan(e*x + d)^2 + a)*(a^2*b - a* 
b^2 - 2*a*c^2 + ((2*a - b)*c^2 + (2*a^2 - 3*a*b + b^2)*c)*tan(e*x + d)^2 - 
 (2*a^2 - 3*a*b)*c))/((4*a*c^4 + (8*a^2 - 8*a*b - b^2)*c^3 + 2*(2*a^3 - 4* 
a^2*b + a*b^2 + b^3)*c^2 - (a^2*b^2 - 2*a*b^3 + b^4)*c)*e*tan(e*x + d)^4 - 
 (a^2*b^3 - 2*a*b^4 + b^5 - 4*a*b*c^3 - (8*a^2*b - 8*a*b^2 - b^3)*c^2 - 2* 
(2*a^3*b - 4*a^2*b^2 + a*b^3 + b^4)*c)*e*tan(e*x + d)^2 - (a^3*b^2 - 2*a^2 
*b^3 + a*b^4 - 4*a^2*c^3 - (8*a^3 - 8*a^2*b - a*b^2)*c^2 - 2*(2*a^4 - 4*a^ 
3*b + a^2*b^2 + a*b^3)*c)*e), -1/2*(((b^2*c - 4*a*c^2)*tan(e*x + d)^4 + a* 
b^2 - 4*a^2*c + (b^3 - 4*a*b*c)*tan(e*x + d)^2)*sqrt(-a + b - c)*arctan(-1 
/2*sqrt(c*tan(e*x + d)^4 + b*tan(e*x + d)^2 + a)*((b - 2*c)*tan(e*x + d)^2 
 + 2*a - b)*sqrt(-a + b - c)/(((a - b)*c + c^2)*tan(e*x + d)^4 + (a*b - b^ 
2 + b*c)*tan(e*x + d)^2 + a^2 - a*b + a*c)) - 2*sqrt(c*tan(e*x + d)^4 + b* 
tan(e*x + d)^2 + a)*(a^2*b - a*b^2 - 2*a*c^2 + ((2*a - b)*c^2 + (2*a^2 - 3 
*a*b + b^2)*c)*tan(e*x + d)^2 - (2*a^2 - 3*a*b)*c))/((4*a*c^4 + (8*a^2 - 8 
*a*b - b^2)*c^3 + 2*(2*a^3 - 4*a^2*b + a*b^2 + b^3)*c^2 - (a^2*b^2 - 2*...
 
3.1.47.6 Sympy [F]

\[ \int \frac {\tan ^3(d+e x)}{\left (a+b \tan ^2(d+e x)+c \tan ^4(d+e x)\right )^{3/2}} \, dx=\int \frac {\tan ^{3}{\left (d + e x \right )}}{\left (a + b \tan ^{2}{\left (d + e x \right )} + c \tan ^{4}{\left (d + e x \right )}\right )^{\frac {3}{2}}}\, dx \]

input
integrate(tan(e*x+d)**3/(a+b*tan(e*x+d)**2+c*tan(e*x+d)**4)**(3/2),x)
 
output
Integral(tan(d + e*x)**3/(a + b*tan(d + e*x)**2 + c*tan(d + e*x)**4)**(3/2 
), x)
 
3.1.47.7 Maxima [F]

\[ \int \frac {\tan ^3(d+e x)}{\left (a+b \tan ^2(d+e x)+c \tan ^4(d+e x)\right )^{3/2}} \, dx=\int { \frac {\tan \left (e x + d\right )^{3}}{{\left (c \tan \left (e x + d\right )^{4} + b \tan \left (e x + d\right )^{2} + a\right )}^{\frac {3}{2}}} \,d x } \]

input
integrate(tan(e*x+d)^3/(a+b*tan(e*x+d)^2+c*tan(e*x+d)^4)^(3/2),x, algorith 
m="maxima")
 
output
integrate(tan(e*x + d)^3/(c*tan(e*x + d)^4 + b*tan(e*x + d)^2 + a)^(3/2), 
x)
 
3.1.47.8 Giac [F(-1)]

Timed out. \[ \int \frac {\tan ^3(d+e x)}{\left (a+b \tan ^2(d+e x)+c \tan ^4(d+e x)\right )^{3/2}} \, dx=\text {Timed out} \]

input
integrate(tan(e*x+d)^3/(a+b*tan(e*x+d)^2+c*tan(e*x+d)^4)^(3/2),x, algorith 
m="giac")
 
output
Timed out
 
3.1.47.9 Mupad [F(-1)]

Timed out. \[ \int \frac {\tan ^3(d+e x)}{\left (a+b \tan ^2(d+e x)+c \tan ^4(d+e x)\right )^{3/2}} \, dx=\int \frac {{\mathrm {tan}\left (d+e\,x\right )}^3}{{\left (c\,{\mathrm {tan}\left (d+e\,x\right )}^4+b\,{\mathrm {tan}\left (d+e\,x\right )}^2+a\right )}^{3/2}} \,d x \]

input
int(tan(d + e*x)^3/(a + b*tan(d + e*x)^2 + c*tan(d + e*x)^4)^(3/2),x)
 
output
int(tan(d + e*x)^3/(a + b*tan(d + e*x)^2 + c*tan(d + e*x)^4)^(3/2), x)